Omega-3 fatty acids, marine sources, plant crops and their environmental sustainability
DOI:
https://doi.org/10.5281/zenodo.12785891Keywords:
fish , seeds, algae, environmental sustainabilityAbstract
Context: Omega-3 fatty acids are essential for health, but traditional sources like fish and plant-based sources no longer support environmental sustainability. Objective: To analyze omega-3 fatty acids from marine and plant sources to determine their environmental sustainability. Methodology: A qualitative systematic review was conducted to analyze the relationship between omega-3 and environmental sustainability. Studies were searched in recognized databases, selected based on rigorous criteria, and qualitatively analyzed to identify patterns, emerging themes, and relationships between variables. Development: Omega-3 fatty acids are primarily consumed through marine foods; however, global overfishing is an issue affecting the environment, warming oceans, resulting in up to a 36% reduction in omega-3 content in fish. Nonetheless, plant-based alternatives like seeds and microalgae provide a sustainable source of omega-3. Conclusion: Omega-3 is crucial for public health, but traditional sources face environmental challenges. Responsible fishing and sustainable agriculture show promise, but overall, consumption needs to be reduced, and alternatives like microalgae need to be explored for sustainable production.
Downloads
References
Abdel-Mawgoud, A., & Stephanopoulos, G. (2018). Simple Glycolipids of Microbes: Chemistry, Biological Activity and Metabolic Engineering. Synthetic and Systems Biotechnology, 3, 3-19. https://doi.org/10.1016/j.synbio.2017.12.001
Abou-Shanab, R., Matter, I., Kim, S., Oh, Y., Choi, J., & Jeon, B. (2011). Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy, 35(79), 95. https://doi.org/10.1016/j.biombioe.2011.04.021
Adarme-Vega, C., Thomas-Hall, S., & Schenk, P. (2014). Towards sustainable sources for omega-3 fatty acids production. ELSEVIER, 26, 14-18. https://doi.org/10.1016/j.copbio.2013.08.003
Aquaculture Stewardship Council (ASC). (2024). Getting certified: Producers ASC. https://asc-aqua.org/producers/get-certified/
Aquaculture Stewardship Council. (2023). ASC Feed Standard (1st ed.). Londres: ASC.
Atehortúa, A., Velásquez, C., & López, B. (2017). Caracterización de diversas especies de peces como fuente de PUFAs y omega 3 según su perfil de ácidos grasos. Perspectivas en Nutrición Humana, 19(1), 93-108. https://doi.org/10.17533/udea.penh.v19n1a08
Bahadar, A., & BilalKhan, M. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128-148. https://doi.org/10.1016/j.rser.2013.06.029
Barbosa, P., & Carrao, H. (2017). Migración ambiental: Efecto de la sequía y desertificación de tierras en el desplazamiento de comunidades rurales de América Latina y el Caribe [Informe]. Joint Research Centre of the European Commission.
Barrett, B., & Bevis, L. (2015). The self-reinforcing feedback between low soil fertility and chronic poverty. Nature Geoscience, 8, 907-912. https://doi.org/10.1038/ngeo2591
Beristain, R., & Álvarez, M. (2023). Microalgas, alternativa biotecnológica. Universitaria, 6(44), 36-38. https://revistauniversitaria.uaemex.mx/article/view/21261
Brevik, C., & Sauer, J. (2015). The past, present and future of soils and human health studies. SOIL, 1, 35-46. https://doi.org/10.5194/soil-1-35-2015
Caballero, N. (2018). Nuevas fuentes de aceites ricos en omega-3 para la producción de lípidos saludables mediante tecnologías limpias de extracción y modificación enzimática [Tesis de maestría, Universidad Autónoma de Madrid], 24-50.
Carrillo-Gómez, C., Gutiérrez-Cuevas, M., Muro-Valverde, M., Martínez-Horner, R., & Torres-Bugarín, O. (2017). La chía como súper alimento y sus beneficios en la salud de la piel. Medigraphic, 12(1), 18-24. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=73512
Carrillo-Gómez, C., Gutiérrez-Cuevas, M., Muro-Valverde, M., Martínez-Horner, R., & Torres-Bugarín, O. (2017). La chía como súper alimento y sus beneficios en la salud de la piel. Medigraphic, 12(1), 18-24. https://www.medigraphic.com/pdfs/residente/rr-2017/rr171c.pdf
Castejón, N., & Señoráns, F. (2020). Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: a review. New Biotechnology, 57, 45-54. https://doi.org/10.1016/j.nbt.2020.02.006
Castro González, M. (2002). Ácidos grasos omega 3: beneficios y fuentes. Interciencia, 27(3), 128-136. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442002000300005
Chaves-Barrantes, N., & Gutiérrez-Soto, M. (2018). Respuestas al estrés por calor en los cultivos. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237-253. http://dx.doi.org/10.15517/am.v28i1.21903
Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A., & Abert-Vian, M. (2017). Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Chisti, Y. (2018). Society and Microalgae: Understanding the Past and Present. En I. A. Levine & J. Fleurence (Eds.), Microalgae in Health and Disease Prevention (pp. 11-21). San Diego, USA: Elsevier Academic Press.
Colombo, S., Rodgers, T., & Diamond, M. (2020). Projected declines in global DHA availability for human. The Royal Swedish Academy of Science, 49, 865-880. https://doi.org/10.1007/s13280-019-01234-6
Conchillo, A., Valencia, P., Ansorena, D., & Astiasarán, I. (2006). Alimentos funcionales: Componentes funcionales en aceites de pescado y alga. Nutrición Hospitalaria, 21(3), 369-373. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112006000300013
Cvjetko-Bubalo, M., Vidović, S., Radojčić Redovniković, I., & Jokić, S. (2018). New Perspective in Extraction of Plant Biologically Active Compounds by Green Solvents. Food and Bioproducts Processing, 109, 52-73. https://doi.org/10.1016/j.fbp.2018.03.001
Díaz, A., Gebler, L., Maia, L., Medina, L., & Trelles, S. (2017). Buenas prácticas agrícolas para una agricultura más resiliente: Lineamientos para orientar la tarea de productores y gobiernos [Informe]. Instituto Interamericano de Cooperación para la Agricultura. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1073646
Dimitrova, M. (2021). Efectos negativos del sector pesquero en el medio marino [Tesis de licenciatura, Universidad Politécnica de Valencia], 50-58.https://riunet.upv.es/bitstream/handle/10251/158361/Dimitrova%20-%20Efectos%20negativos%20del%20sector%20pesquero%20en%20el%20medio%20marino..pdf?sequence=2&isAllowed=y
Estella, A., Gómez, M., Parra, F., Romero, A., & López, L. (s.f.). Semillas de girasol, lino, chía y sésamo. Compuestos nutricionales y su efecto sobre la salud. Revista Nutrición Investigación, 5-6. https://escuelanutricion.fmed.uba.ar/revistani/pdf/21a/rb/911_c.pdf
FAO. (2022). El estado mundial de la pesca y la acuicultura. https://www.fao.org/3/cc0461es/online/sofia/2022/world-fisheries-aquaculture-production.html
FAO. (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation [Informe]. Roma: FAO. https://www.fao.org/3/cc0461en/cc0461en.pdf
Flores, M., Yasiri, M., & Crespo, J. (2023). Hábitos de consumo y valor nutricional de los recursos marinos entre los pescadores de Yucatán, México. Investigaciones Geográficas, 110. https://doi.org/10.14350/rig.60690
Fuentes Soriano, P. (2019). Determinación de ácidos grasos por cromatografía de gases para la diferenciación de nueces (Juglans regia) según su origen [Trabajo Fin de Máster, Universidad de Cádiz], 1-52. https://rodin.uca.es/bitstream/handle/10498/22384/TFM_Fuentes_Pablo_2020.pdf?sequence=1&isAllowed=y
García García FJ, Roman-Acosta D. Deindustrialization: efficiency and local development. SCT Proceedings in Interdisciplinary Insights and Innovations. 2024; 2:312. DOI: https://doi.org/10.56294/piii2024312
García, A. (2019). Los ácidos grasos esenciales: prevención y tratamiento de la inflamación [Documento de trabajo, Universidad de Cantabria], 10-11. https://repositorio.unican.es/xmlui/bitstream/handle/10902/16516/Iba%C3%B1ezGarciaAlejandro.pdf?sequence=1
He, M., Qin, C., Wang, X., & Ding, N. (2020). Plant unsaturated fatty acids: biosynthesis and regulation. Frontiers in Plant Science, 11, 390. https://doi.org/10.3389/fpls.2020.00390
Hixson, S., & Arts, M. (2016). Climate warming is predicted to reduce omega-3. Global Change Biology, 22, 2744-2755. https://doi.org/10.1111/gcb.13295
INEGI. (2023). Cuentas económicas y ecológicas de México (CEEM) (pp. 2-3). https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/CEEM/CEEM2022.pdf
International Food Information Council. (2020). Omega-3 fatty acids. https://foodinsight.org/wp-content/uploads/2020/12/IFIC-Omega-3-Fact-Sheet.pdf
Izquierdo, P., Torres, G., Barboza de Martínez, Y., Márques, E., & Allara, M. (2000). Análisis proximal, perfil de ácidos grasos, aminoácidos esenciales y contenido de minerales en doce especies de pescado de importancia comercial en Venezuela. Archivos Latinoamericanos de Nutrición, 50(2). https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222000000200013
Jensen, J., Eilertsen, K., Otnæs, C., Mæhre, H., & Elvevoll, E. (2020). An Update on the Content of Fatty Acids, Dioxins, PCBs and Heavy Metals in Farmed, Escaped and Wild Atlantic Salmon (Salmo salar L.) in Norway. Foods, 9, 1-17. https://doi.org/10.3390/foods9121901
Kaya, Y., & Turan, H. (2010). Comparison of protein, lipid and fatty acids composition of anchovy (Engraulis encrasicolus L. 1758) during the commercial catching season. Journal of Muscle Foods, 21, 474-483. https://doi.org/10.1111/j.1745-4573.2009.00196.x
Laurett, R., Paço, A., & Mainardes, E. (2021). Measuring sustainable development, its antecedents, barriers, and consequences in agriculture: An exploratory factor analysis. Environmental Development, 37, 1-14. https://doi.org/10.1016/j.envdev.2020.100583
Lizaur, A., & González, B. (2022). SMAE Sistema Mexico de Alimentos Equivalentes (5ta ed.). Ciudad de México: Fomento de Nutrición.
López, M., Mercedes, S., Oliva, M., Valdez, P., Almeida, O., Zatarain, O., & Sandova, E. (2016). Fitoplancton: pequeños centinelas del océano. Ciencia, 1, 1-2. https://www.revistaciencia.amc.edu.mx/online/FitoPlancton.pdf
López-Sánchez, A., Luque-Badillo, A., Orozco-Nunnelly, D., Alencastro-Larios, N., Ruiz-Gómez, J., García-Cayuela, T., & Gradilla-Hernández, M. (2021). Food loss in the agricultural sector of a developing country: transitioning to a more sustainable approach. The case of Jalisco, Mexico. Environmental Challenges, 5(2021), 1-16. https://doi.org/10.1016/j.envc.2021.100327
Lyssia, T., & Rodríguez, M. (2015). El efecto de omega 3 en la salud humana y consideraciones en la ingesta. Revista chilena de nutrición, 42(1), 90-95. https://doi.org/10.4067/S0717-75182015000100012
Machado Valdivia, A. ., & Sotolongo Díaz, D. . (2023). Impacto del cambio climático en la hidrología de regiones criohidrológicas: una revisión sistemática. Journal of Scientific Metrics and Evaluation, 1(I), 12-25. https://doi.org/10.69821/JoSME.v1iI.1
Marine Stewardship Council. (2023). Working towards MSC certification: A practical guide for fisheries improving sustainability. Londres: MSC.
Marine Stewardship Council. (2024). El Estándar de Pesquerías MSC. https://www.msc.org/es/estandares-y-certificacion/los-estandares-de-msc/el-estandar-de-pesquerias-msc
Méndez-Espinoza, C., & Vallejo Reyna, M. (2019). Mecanismos de respuesta al estrés abiótico: hacia una perspectiva de las especies forestales. Revista Mexicana de Ciencias Forestales, 10(56), 33-64. https://doi.org/10.29298/rmcf.v10i56.567
Murgadas, M. (2021). Efecto y consecuencias del cambio climático en el contenido de omega 3 en el pescado: Análisis de la viabilidad de otras fuentes de omega 3 para la nutrición humana [Tesis de licenciatura, Universidad Politécnica de Valencia], 15-31. https://riunet.upv.es/bitstream/handle/10251/170863/Puchades%20-%20Efecto%20y%20consecuencias%20del%20cambio%20climatico%20en%20el%20contenido%20de%20omega%203%20en%20el%20pescado%20A....pdf?sequence=2
National Institutes of Health. (2020). Datos sobre los ácidos grasos omega-3 (pp. 1-4). https://ods.od.nih.gov/factsheets/Omega3FattyAcids-DatosEnEspanol/
National Institutes of Health. (2022). Datos sobre los ácidos grasos omega-3. https://ods.od.nih.gov/pdf/factsheets/Omega3-DatosEnEspanol.pdf
National Jewish Health. (2023). Fish Oil and Omega-3 Fatty Acids. https://www.nationaljewish.org/conditions/medications/supplements/fish-oil-and-omega-3#:~:text=Although%20fish%20is%20a%20source,plankton%20consumed%20in%20their%20diets.
Ohse, S., Bianchini, R., Ávila, R., Gordo, R., Badiale, E., & Cunha, P. (2015). Lipid content and fatty acid profiles in ten species of microalgae. Idesia, 33(1), 93-101. https://doi.org/10.4067/S0718-34292015000100010
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016). La pesca ilegal, no declarada y no reglamentada [Documento técnico]. https://www.fao.org/3/i6069s/i6069s.pdf
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2018). Biodiversidad para una agricultura sostenible [Informe]. https://www.fao.org/3/CA2227ES/ca2227es.pdf
Organización de las Naciones Unidas. (2021). ¿Qué dice la evidencia sobre los efectos de los subsidios perjudiciales a la pesca en América Latina y el Caribe? [Reunión Virtual]. https://www.cepal.org/sites/default/files/news/files/reporte_subsidios_pesca_v4_04112021_final.pdf
Oz, M., & Dikel, S. (2015). Comparison of Body Compositions and Fatty Acid Profiles of Farmed and Wild Rainbow Trout (Oncorhynchus mykiss). Food Science and Technology, 3(4), 56-60. https://doi.org/10.13189/fst.2015.030402
Patel, A., Mikes, F., & Matsakas, L. (2018). An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules, 23(7), 1-22. https://doi.org/10.3390/molecules23071562
Popovic, N., Kozacinski, L., Strunjak-Perovic, I., Coz-Rakovac, R., Jadan, M., Cvrtila-Fleck, Z., & Barisic, J. (2012). Fatty acid and proximate composition of bluefin tuna (Thunnus thynnus) muscle with regard to plasma lipids. Aquaculture Research, 43, 722-729. https://doi.org/10.1111/j.1365-2109.2011.02880.x
Ramírez, A. (2015). Purificación de ácido eicosapentaenoico (EPA) mediante reacciones enzimáticas [Tesis doctoral, Universidad de Almería]. Almería, España. https://repositorio.ual.es/bitstream/handle/10835/91/MEMORIA.pdf?sequence=1
Regalado, H. (2021). Obtención de lípidos estructurados a partir de microalgas [Tesis de maestría, Universidad de Almería], 4-39. https://repositorio.ual.es/bitstream/handle/10835/13489/CAIROS%20REGALADO,%20HECTOR%20SALVADOR.pdf?sequence=1&isAllowed=y
Rivas de García, B. L. . (2023). Capital social y empoderamiento: estrategias de trabajo social en comunidades rurales. Journal of Scientific Metrics and Evaluation, 1(I), 31-48. https://doi.org/10.69821/JoSME.v1iI.3
Román Santana, W. M., López, L. del C., y Román Acosta, D. (2023). Potencialidades de América Latina en el sector turístico. Negonotas Docentes, (21), 57-69. https://revistas.cun.edu.co/index.php/negonotas/article/view/950
Roman-Acosta, D. (2023). Intersectoral collaboration for the development of rural entrepreneurship in Latin America and the Caribbean. SCT Proceedings in Interdisciplinary Insights and Innovations, 1, 224. https://doi.org/10.56294/piii2023224
Sahu, A., Pancha, I., Jain, D., Paliwal, C., Ghosh, T., Patidar, S., Bhattacharya, S., & Mishra, S. (2013). Fatty acids as biomarkers of microalgae. Phytochemistry, 89, 53-58. https://doi.org/10.1016/j.phytochem.2013.02.001
Salvino, T. (2006). Psychrophilic microorganisms: challenges for life. Embo Reports, 7, 385-389. https://doi.org/10.1038/sj.embor.7400662
Šimat, V., Hamed, I., Petričević, S., & Bogdanović, T. (2020). Seasonal Changes in Free Amino Acid and Fatty Acid Compositions of Sardines (Sardina pilchardus Walbaum, 1792) Implications for Nutrition. Foods, 9(7), 867. https://doi.org/10.3390/foods9070867
Sosa Sánchez, V. J. (2023). Virtud en gobernantes y ciudadanos: Análisis según Tomás de Aquino y Marsilio de Padua. Actas Iberoamericanas En Ciencias Sociales, 1(I), 9-14. https://plagcis.com/journal/index.php/aicis/article/view/5
Sprague, M., Dick, J., & Tocher, D. (2016). Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Scientific Reports, 6, 1-9. https://doi.org/10.1038/srep21892
Ultreras Rodríguez, A. . (2024). Accesibilidad a la investigación multidisciplinaria. Revista Multidisciplinaria Voces De América Y El Caribe, 1(1), 11-13. https://remuvac.com/index.php/home/article/view/14
UNAM. (s.f.). Combatir la pesca irregular en México requiere consumidores más informados. https://unamglobal.unam.mx/global_revista/combatir-la-pesca-irregular-en-mexico-requiere-consumidores-mas-informados/
UNICEF. (2017). Los efectos del cambio climático y los cambios atmosféricos conexos en los océanos (1st ed.). UNICEF.
Valenzuela, A. (2015). Las microalgas: una fuente renovable para la obtención de ácidos grasos omega-3 de cadena larga para la nutrición humana y animal. Revista Chilena de Nutrición, 42(3), 306-310. https://doi.org/10.4067/S0717-75182015000300013
Valero, T., Alonso, P., Moreno, E., Torres, J., & Moreiras, G. (2018). La alimentación española, características nutricionales de los principales alimentos de nuestra dieta (2da ed.). Madrid: ROAL.
Viana, C., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment, 806(3), 1-9. https://doi.org/10.1016/j.scitotenv.2021.150718
Wadsworth, J. (1997). Análisis de sistemas de producción animal, tomo 1: Las bases conceptuales [Libro]. FAO, 21-42.
Wang, Q., Xie, Y., Johnson, D., Li, Y., He, Z., & Li, H. (2019). Ultrasonic-pretreated lipase-catalyzed synthesis of medium–long–medium lipids using different fatty acids as sn-2 acyl-site donors. Food Science & Nutrition, 7, 2361–2373. https://doi.org/10.1002/fsn3.1083
Xue, Z., Yu, Y., Yu, W., Gao, X., Zhang, Y., & Kou, X. (2020). Development prospect and preparation technology of edible oil from microalgae. Frontiers in Marine Science, 7(402), 13-14. https://doi.org/10.3389/fmars.2020.00402
Yeşilayer, N., & Genç, N. (2013). Comparison of proximate and fatty acid compositions of wild brown trout and farmed rainbow trout. South African Journal of Animal Science, 43(1), 88-97. https://doi.org/10.4314/sajas.v43i1.11
Zlatanos, S., & Laskaridis, K. (2007). Seasonal variation in the fatty acid composition of three Mediterranean fish – sardine (Sardina pilchardus), anchovy (Engraulis encrasicholus) and picarel (Spicara smaris). Food Chemistry, 103, 725-728. https://doi.org/10.1016/j.foodchem.2006.09.013
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sebastián, Noemí, José
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Voces de América y el Caribe adheres to the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. Under this license, others are allowed to remix, tweak, and build upon your work non-commercially, as long as they credit you for the original creation. Their new works must be under an identical license as the one that covers the original work. For more details on this license, please visit https://creativecommons.org/licenses/by-nc-sa/4.0/.
By publishing in our journal, authors agree to these conditions where others may share, use and adapt their work, as long as it is done non-commercially and with proper attribution given to the original work published in Voces de América y el Caribe.